8 research outputs found

    Doctor of Philosophy in Computing

    Get PDF
    dissertationThe demand for main memory capacity has been increasing for many years and will continue to do so. In the past, Dynamic Random Access Memory (DRAM) process scaling has enabled this increase in memory capacity. Along with continued DRAM scaling, the emergence of new technologies like 3D-stacking, buffered Dual Inline Memory Modules (DIMMs), and crosspoint nonvolatile memory promise to continue this trend in the years ahead. However, these technologies will bring with them their own gamut of problems. In this dissertation, I look at the problems facing these technologies from a current delivery perspective. 3D-stacking increases memory capacity available per package, but the increased current requirement means that more pins on the package have to be now dedicated to provide Vdd/Vss, hence increasing cost. At the system level, using buffered DIMMs to increase the number of DRAM ranks increases the peak current requirements of the system if all the DRAM chips in the system are Refreshed simultaneously. Crosspoint memories promise to greatly increase bit densities but have long read latencies because of sneak currents in the cross-bar. In this dissertation, I provide architectural solutions to each of these problems. We observe that smart data placement by the architecture and the Operating System (OS) is a vital ingredient in all of these solutions. We thereby mitigate major bottlenecks in these technologies, hence enabling higher memory densities

    Quantifying the relationship between the power delivery network and architectural policies in a 3D-stacked memory device

    Get PDF
    pre-printMany of the pins on a modern chip are used for power delivery. If fewer pins were used to supply the same current, the wires and pins used for power delivery would have to carry larger currents over longer distances. This results in an "IR-drop" problem, where some of the voltage is dropped across the long resistive wires making up the power delivery network, and the eventual circuits experience fluctuations in their supplied voltage. The same problem also manifests if the pin count is the same, but the current draw is higher. IR-drop can be especially problematic in 3D DRAM devices because (i) low cost (few pins and TSVs) is a high priority, (ii) 3D-stacking increases current draw within the package without providing proportionate room for more pins, and (iii) TSVs add to the resistance of the power delivery net-work. This paper is the first to characterize the relationship be- tween the power delivery network and the maximum sup ported activity in a 3D-stacked DRAM memory device. The design of the power delivery network determines if some banks can handle less activity than others. It also deter-mines the combinations of bank activities that are permissible. Both of these attributes can feed into architectural policies. For example, if some banks can handle more activities than others, the architecture benefits by placing data from high-priority threads or data from frequently accessed pages into those banks. The memory controller can also derive higher performance if it schedules requests to specific combinations of banks that do not violate the IR-drop constraint

    Avoiding Information Leakage in the Memory Controller with Fixed Service Policies

    Get PDF
    ABSTRACT Trusted applications frequently execute in tandem with untrusted applications on personal devices and in cloud environments. Since these co-scheduled applications share hardware resources, the latencies encountered by the untrusted application betray information about whether the trusted applications are accessing shared resources or not. Prior studies have shown that such information leaks can be used by the untrusted application to decipher keys or launch covert-channel attacks. Prior work has also proposed techniques to eliminate information leakage in various shared resources. However, the best known solution to eliminate information leakage in the memory system incurs high performance penalties. This work develops a comprehensive approach to eliminate timing channels in the memory controller that has two key elements: (i) We shape the memory access behavior of every thread so that every thread appears identical to the memory system and to potential attackers. (ii) We show how efficient memory access pipelines can be constructed to process the resulting memory accesses without introducing any resource conflicts. We mathematically show that the proposed system yields zero information leakage. We then show that various page mapping policies can impact the throughput of our secure memory system. We also introduce techniques to re-order requests from different threads to boost performance without leaking information. Our best solution offers throughput that is 26% lower than that of an optimized non-secure baseline, and that is 70% higher than the best known competing scheme
    corecore